
J .  Fluid Mmh. (1987), WOZ. 175, p p .  333-342 

Printed in &eat Britain 
333 

Unsteady and nonlinear effects near the cusp lines 
of the Kelvin ship-wave pattern 

By T. R. AKYLAS 
Department of Mechanical Engineering, Massachusetts Institute of Technology, 

Cambridge, MA 02139, USA 

(Received 5 August 1985) 

According to the linearized water-wave theory, a localized pressure source travelling 
at  constant speed on the surface of deep water generates the classical Kelvin 
ship-wave pattern, which follows behind the source and is confined within a sector 
of half-angle equal to 19.5'. In this paper, an asymptotic theory is developed which 
takes into account finite-amplitude and unsteady effects near the boundaries of the 
Kelvin sector, the so-called cusp lines, where the far-field wave disturbance takes the 
form of a modulated wavepacket. A nonlinear equation governing the spatial and 
temporal evolution of the wavepacket envelope is derived. It is shown that, for a 
pressure source turned on impulsively, a nonlinear steady state is reached. All 
unsteady effects are found in a region of finite extent which moves away from the 
source. Numerical calculations indicate that the steady-state nonlinear response is 
very similar to the steady-state linear response. 

1. Introduction 
The wave pattern generated by a ship travelling at constant speed on the surface 

of deep water was first discussed by Kelvin (1905) on the basis of linearized 
water-wave theory. He modelled the ship as a prescribed localized pressure distri- 
bution and calculated the far-field, steady-state wave disturbance using the method 
of stationary phase. His analysis shows that the wave pattern consists of both 
transverse and diverging waves which are found behind the source and are confined 
within a sector of half-angle equal to 19.5". Near the boundaries of the Kelvin sector, 
the so-called cusp lines, where the transverse and diverging waves meet, there is a 
finite transition region in which the disturbance switches from oscillatory to 
exponentially decaying. These transition regions near the cusp lines, as well as the 
precise behaviour close to the track of the source, were analysed in detail by Ursell 

Kelvin's solution, based entirely on the linearized water-wave theory, does not take 
into account any nonlinear effects due to the exact nonlinear free-surface boundary 
conditions. Furthermore, it does not incorporate the appropriate boundary condi- 
tions at the ship hull, so that it is not expected to model accurately the flow field near 
the ship. These two issues have attracted a great deal of attention in recent years, 
primarily because they are important in calculating ship-wave resistance. 

A method to include weakly nonlinear effects in the Kelvin ship-wave pattern, 
which seems to be analytically tractable, is to use a perturbation expansion in terms 
of a wave-amplitude parameter : Kelvin's solution provides the leading-order 
approximation and higher-order nonlinear corrections are found by solving a 
hierarchy of linear, inhomogeneous problems. Along these lines, Gadd ( 1969) proposed 
a perturbative scheme which, in principle, takes into account both the boundary 

(1960). 
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conditions on the ship surface and the free-surface nonlinearities. However, in a 
published discussion following Gadd’s paper, Lighthill (see Gadd 1969) criticized this 
treatment of free-surface nonlinearity : apart from being very tedious to  carry out, 
a regular perturbation expansion cannot predict any large changes in the wave 
disturbance, which may be generated a t  large distances from the source owing to 
weakly nonlinear effects. He also suggested that the problem could be handled by 
Whitham’s theory (Whitham 1974) which applies to slowly varying nonlinear 
wavetrains. 

Howe (1967) attempted to apply Whitham’s theory to the ship-wave problem, but 
was unable to do so because the wave pattern consists of two wavetrains, transverse 
and diverging, which also are not slowly varying close to the ship. Instead, he applied 
Whitham’s theory to a single nonlinear wavetrain, generated by a uniform stream 
past a slowly varying wall, and found that nonlinear effects lead to phase jumps. 
However, such phenomena were not observed in laboratory experiments (Newman 
1970). 

Working from a somewhat different viewpoint, Hogben (1972) examined the effect 
of wave interactions on the phase geometry of the Kelvin wave pattern generated 
by a source travelling in a channel of finite width. Including only a finite number 
of discrete waves, he found no appreciable nonlinear effects. However, this approach 
is perhaps inadequate in the case of an unbounded channel, where a continuum of 
modes exist, and is certainly invalid close to  the cusp lines, where the transition 
regions described by Ursell (1960) are present. 

A little earlier, Newman (1971) investigated the possibility of third-order nonlinear 
interactions between transverse and diverging waves and came to the conclusion that 
no such interactions are possible, except perhaps near the cusp lines. Invoking 
Lighthill’s radiation condition (Whitham 1974, p. 447), he proceeded to calculabe the 
effect of nonlinearity close to  the cusp lines in terms of a regular perturbation 
expansion akin to  that proposed by Gadd (1969). He reached the surprising 
conclusion that no nonlinear steady state exists, in the sense that the third-order 
nonlinear correction diverges logarithmically in the far field. These findings are 
interesting and suggest that  nonlinear effects are particularly strong close to the cusp 
lines. However, Lighthill’s criticism may still be appropriate: the divergence of the 
third-order nonlinear correction indicates that  the regular perturbation expansion 
breaks down in the far field and a uniformly valid representation is needed. 

The present work, which was originally motivated by the findings of Newman 
(1971), examines the far-field nonlinear behaviour of the Kelvin wave pattern near 
the cusp lines. Two questions are addressed : first, the existence of a nonlinear steady 
state; and, secondly, the extent to which such a steady state, if it  exists and is stable, 
is different from the steady state predicted by linear theory. To answer these 
questions, the wave disturbance near the cusp lines is represented as a modulated 
wavepacket. Using the method of multiple scales, a nonlinear evolution equation 
for the wave envelope is derived, which enables us to obtain a uniformly valid 
representation of the far-field response. It is demonstrated that, contrary to the 
conclusion reached by Newman, a nonlinear steady state is approached; all unsteady 
effects are confined within a certain finite region which moves away from the source. 
Furthermore, numerical solutions of the nonlinear evolution equation indicate that 
the nonlinear response is very similar to the steady-state linear response. 

The approach to  the nonlinear steady state is investigated on the assumption that 
the source is turned on impulsively. This choice of initial condition is more realistic 
than Lighthill’s radiation condition, invoked by Newman (1971), which assumes that 
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the source is turned on very slowly (adiabatically) from zero to its steady-state form. 
In  linear steady-wave problems, where the final steady state is independent of initial 
conditions, the use of Lighthill's technique is extremely convenient, for i t  gives the 
steady-state response with the minimum amount of manipulation. However, as 
pointed out by Akylas (1984b), in nonlinear problems the long-time behaviour of the 
response may depend crucially on the choice of initial conditions. 

2. Asymptotic behaviour near the cusp lines 
Consider a localized pressure source travelling with constant speed along a straight 

path on the surface of deep water. Alternatively, the source may be taken to  be 
stationary in the presence of a uniform stream U .  Our interest centres on the wave 
disturbance near the cusp lines of the Kelvin pattern, which are inclined with respect 
to the streamwise direction by the angles 0 = & 19.5" (tan0 = 2-g). Accordingly, it 
proves convenient to choose a coordinate system such that the x-axis is along the 
cusp line 0 = tan-'2-;, the y-axis is vertically upwards from the undisturbed free 
surface, and the z-axis is in the plane of the undisturbed free surface, a t  right angles 
to x and y. 

Dimensionless (primed) variables are adopted according to 

u2 u /  (x,y,z) = -(x',y',z'), t = -t , 7 = a$, $ = aU$', p = agpp', 
9 9 

where y = ~ ( x ,  z ,  t )  is the free-surface elevation, $(x, y, z ,  t)  is the perturbation velocity 
potential, p ( x ,  z )  is the prescribed pressure, a is a typical wave amplitude and g,  p 
denote the gravitational acceleration and the water density respectively. Dropping 
the primes, the governing equations consist of Laplace's equation for $, 

$,,+$yy+$zz = 0 ( -00  < Y < €717 ( 1 )  

together with the kinematic and dynamic boundary conditions at the free surface 

$,+r+cose$ , -s in0$,+~s($~+$~+$~)  = - p  (y = q), (3) 

IV$l +o (Y + - 00). (4) 

and the condition at infinity 

The dimensionless parameter E = q/V, being proportional to a, is a measure of 
nonlinearity as well as a, measure of the source strength. 

To motivate the ensuing analysis and show the potential significance of nonlinear 
effects near the cusp lines, we first recall the wave behaviour predicted by linear 
theory (E = 0). Using an extended version of the method of stationary phase, Ursell 
(1960) demonstrated that near the cusp lines the linear, steady-state, far-field 
response takes the form 

eirr+c.c. (x% l ) ,  

where a = k;x,  (6a) 

k ,  =%(-cosy, siny), x = (x,z), tany = 6; ( 6 b )  

Ai is the standard Airy function, Cis a certain constant related to the source strength, 
and C.C. stands for complex-conjugate. Equation ( 5 )  shows that, close to the cusp line 
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z = 0, the response takes the form of a modulated wavepacket with wavenumber k,; 
as x-+ m, the wave amplitude decays like 2-t while the extent of the wavepacket in 
the z-direction grows like d. Accordingly, in the far-field, linear dispersive effects are 
O ( d )  whereas nonlinear effects are 0 ( s 2 / x )  ; dispersive effects decay faster than 
nonlinear effects and thus, for any finite E ,  linearized theory becomes non-uniform 
at sufficiently large z: nonlinear effects cannot be neglected in comparison with linear 
dispersive effects for z 2 O ( P ) .  Also, for x = O ( S - ~ ) ,  7 = 0 ( e 2 ) .  

The far-field expression ( 5 )  was obtained by Ursell (1960) by deriving asymptotic 
expansions of the exact linear response. In  discussing the nonlinear response, 
however, this approach is most inconvenient, as the exact nonlinear solution is not 
available. Instead, guided by the results of the linear theory, we assume that, in the 
far field (z %- l ) ,  the disturbance still takes the form of a modulated wavepacket and 
.me asymptotic expansions directly, valid for 0 < E < 1 : 

$ - E ~ $ ~ + E ~ $ ~ + E ~ $ , + ~ ( E * ) ,  71 - S ~ ~ ~ + E ~ ~ ~ + E ~ ~ , + O ( E ~ ) ,  (7) 

$2 = A 2 ( X ,  Y,Z,T)e2koY e2ia+c.c., q2 = S 2 ( X , Z ,  T)e2ia+c.c., (8b) 

with = A ( X ,  Y,Z,T)ekoYeia+c,c., ql = S(X,Z,T)e'"+c.c., 

where k, = lk,l = I. Here X ,  Y ,  2, T denote the wavepacket envelope variables 

The form of the above expansion as well as the scalings of X ,  Y ,  2 are suggested by 
the qualitative arguments made earlier, whereas T is chosen such that unsteady and 
dispersive effects balance in the far field. In the expansion (7), qz, dz represent the 
second harmonic and q0, $, the mean flow generated by the nonlinear interactions. 

The main goal is to derive an evolution equation for S ,  the envelope of the 
free-surface elevation. This is done by substituting the expansion (7) into Laplace's 
equation (1) and the free-surface conditions (2), (3) and solving perturbatively for 
the mean flow, the second harmonic, and the primary harmonic. However, a little 
insight can reduce substantially the amount of algebra involved in the derivation. 
It is helpful to note that, in deep water, the induced mean flow does not participate 
in the dynamics of the primary and, thus, can be ignored, so that the derivation of 
the evolution equation can be carried out in two steps: first, the linear dispersive 
terms can be obtained from the linear water-wave dispersion relation which, in the 
frame of reference moving with the source, reads 

w(Z,m) = (Z2+m2$+1 cose-m sine, (10) 

where w is the frequency and 1 ,  m are the x- and z-components of the wavenumber 
vector k. For k = k,, referring back to (6b), it is seen that 

Therefore, the linear dispersive part of the evolution equation is 

a a { a"T ( ax7 az e6-+ iw I,- is6- m, - iez-)} AS. 



Unsteady and nonlinear eyffects near the cusp lines of the Kelvin sector 337 

Expanding in powers of e2, it is found that the dominant dispersive terms are 

where use has been made of 

_ -  

the above conditions express the well-known fact that the cusp line is a caustic of 
the linear theory. 

The nonlinear and forcing terms of the evolution equation can now be obtained 
by a perturbation analysis that does not involve any dependence on the spatial 
variables X, Y, 2. Direct substitution of the expansion (7) into the free-surface 
conditions (2), (3) gives for the second harmonic 

8, = koQ2, (15) 

and for the primary harmonic (correct to O ( 8 ) )  

S - i (3 - k, A +@AT + ki esS2S* = - c 2 p  eda. ( 1 6 b )  

Eliminating A from the above equations, i t  is found that (to the same order of 

Combining (13) with (17), it  is deduced that the complete evolution equation, which 
includes the dominant dispersive and nonlinear effects, is 

ST + C, S, + c1 Szzz + ip$2S* = - i (18) 

where 

The forcing term p e-'& may be rewritten in terms of the envelope scales: 

€2 11 X Z  , 

so that, for fixed X, Z and E+O, 

p e+ - 4x%?yi, 6 ( X )  6(Z) (~--20), 

where yi, denotes the Fourier transform of p(x, z) evaluated at k, and 6 is the Dirac 
delta function. Thus, combining (18) with (21), the evolution equation reads 

ST + C, Sx + c1 Szzz + ipS2S* = ic, 6 ( X )  S(Z), (22) 

with c2 = -2x2 (;)$,. (23) 
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source is turned on impulsively a t  T = 0, we require 
Finally, initial conditions are needed for the solution of (22); assuming that the 

S(X,Z, T )  = 0 (T+O-). (24) 

The appearance of a delta function on the right-hand side of (22) represents the 
effect of the pressure source which, when viewed from the far field, has collapsed to 
a point. It is possible to have misgivings about this source term, since the expansion 
(7) is valid in the far field (z 9 l ) ,  where the localized pressure distribution p ( z ,  z )  
vanishes. However, as will be argued in $93 and 4 the delta function provides the 
correct link between the near and the far field. 

3. Linear unsteady response 
It is instructive to investigate first the solution, S , ( X , Z , T ) ,  of the linearized 

version of the evolution equation (22), subject to the initial condition (24). Standard 
Fourier-integral methods show that 

W 

S,= IW j dZdmF(l,m;T)exp[i(lX+mZ)], (25) 
-co - w  

where F =  C2 (1-exp[-i(lc,-m3cl) TI}. 
47c2(lco -m3c1) 

Therefore, separating the two terms in (26), 

with 

co 
c2 dmeimZ(G,-G,), 

S L = s  
-co 

eilX 

lc, - m3c1 
exp [ - i(lco - m3ccl) TI, G2(m; X, T )  = jc+ dl 

and the contour of integration C+ is indented to pass above the pole of the integrand. 
Using the residue theorem, it is found that, for X > 0, 

G l = O  ( X > O )  (29a) 

exp (im3c1 X/c,) (0 < X < c, T )  (29b) 
(X > c, T). 

and 

Similarly, for X < 0, indenting the contour of integration to pass below the pole of 
the integrand in (28), it is readily found that 

G, = G, = 0 (X < 0). (30) 

Therefore, combining (27), (29) and (30), it  follows that 

S,=O ( X < O ,  X > c o T ) .  (31 b) 

Equations (31) show that the linear response is solely confined in a finite region 
behind the source: for T > 0 and 0 < X < co T ,  the wave disturbance is steady; for 
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all other X ,  the response is zero. Close to the discontinuity at  X = co T higher-order 
dispersive effects become important and give rise to a smooth transition region where 
the response is unsteady. This region will be discussed in detail in $6. 

It is important to note that, according to (31), the linear steady state (5 ) ,  derived 
by Ursell(l960) on the basis of the exact linear solution, is recovered as T +  00. This 
points to the fact that the delta function on the right-hand side of (22) indeed provides 
the correct matching between the near field (x = O(1)) and the far field (z % 1).  This 
is so even when the nonlinear term is included in (22); as already remarked in $2, 
for 0 < 8 4 1, there is an intermediate region ( X  4 1 , 1  < x 4 P)  where nonlinear 
effects are negligible and S - S,. [Strictly speaking, (22) is not valid in an O(ss) region 
around X = 0, where the response is not slowly varying and the two cusp lines meet; 
to the leading-order approximation used here, the size of this region has shrunk to 
zero .] 

4. Nonlinear response 
One of the questions raised earlier was whether the nonlinear response reaches 

steady state. The regular perturbation expansion of Newman (1971) in conjunction 
with Lighthill’s radiation condition suggest the presence of a nonlinear instability ; 
so i t  is of immediate interest to examine the predictions of the uniformly valid theory 
developed in $2. 

Returning to the nonlinear equation (22) subject to the initial condition (24), we 
claim that the appropriate solution satisfies 

co S,  + c1 S,,, + i/3S2S* = 0 (0 < X < co T ) ,  ( 3 2 4  

with S - SL(X, 2) (X+O+, T ) ,  (32b) 

and S = O  ( X < O ,  X > c 0 T ) .  (33) 

X = X-c0T,  (34) 

S ,  + c1 S,,, + iaS2S* = ic, S(X’ + co T )  S(2)  (35a) 

and S(X;Z,  T )  = 0 (T+O-). (35b) 

This can be formally justified by adopting a frame of reference moving with co, 

so that (22) reads 

With this change of variable, X can now be regarded as a parameter that denotes 
the position at T = 0 of an observer moving with speed co. For T > 0 and X > 0 (i.e. 
X > coT) or T > 0 and X < 0 with X’+c,T < 0 (i.e. X < 0 ) ,  there is no excitation 
on the right-hand side of (35a) and causality requires that the response vanishes, in 
agreement with (33). On the other hand, for T > 0 and X’ < 0 with X ’ + c o  T > 0 (i.e. 
0 < X < co T ) ,  there is a finite response that depends on x’ + co T = X and 2 only 
and, therefore, has to be steady. Finally, as X + c o  T = X+O+, S - S,  because, as 
already indicated, in the intermediate region X 4 1 , l  4 x 4 E - ~ ,  the linear dispersive 
terms (of O(X-!))  dominate the nonlinear term (of O(X-l)) in (35a). Thus, by imposing 
the condition (32b) ,  matching between the near and the far field is achieved and the 
validity of (32a, b)  is verified. 

Equations (32), (33) indicate that the nonlinear solution is similar in nature to the 
linear one ; it is non-zero only in the region 0 < X < co T and is steady. In  the limit 
T+m, a nonlinear steady state is approached which is governed by (32); no sign of 
the nonlinear instability suggested by Newman (1971) is found. 
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5. Numerical results 
Having demonstrated that a nonlinear steady state is approached, the question 

arises as to how this steady state differs from the linear one. This question is addressed 
here by solving numerically (32a)  subject to the asymptotic boundary condition 
(32b). 

With no loss of generality, we solve (32a)  in the normalized form 

Sx+~Ss,,,+iS2S = 0 (X > 0, -m < Z < m), ( 3 6 4  

(36b) 
1 

with S - s A i ( $ )  (X+O+, -a < Z <  m). 

The numerical method of solution is a conditionally stable, explicit finite-difference 
scheme of the Lax-Wendroff type, similar to the one used for the solution of the forced 
Kortewegae Vries equation (Akylas 1984~) .  Using the notation 

ST = S(nAX, jAZ), (37 )  

we write s;+i= sy + AXS;, ++Ax~s;,, + o(Ax~), (38) 

where S,  and S,, are expressed in terms of S and its derivatives with respect to 
8, through (36a)  ; the discretization is completed by approximating all 2-derivatives 
in terms of second-order centred differences. Furthermore, a sufficiently large 
computational domain in the 2-direction was chosen so that, at  the boundaries, 
dispersion dominated nonlinearity and S behaved in accordance with the asymptotics 
of the linearized solution (36 b )  : 
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In implementing this procedure, the solution was started at X = 0.1 with the 
linear solution (36b) and was advanced in X using the step sizes A 2  = 0.07 
(for -25 < Z < 5), AX = 0.5 x without encountering any difficulty due to 
numerical instability. 

Figure 1 shows the computed nonlinear complex wave envelope as a function of 
Z at X = 4.0 together with the corresponding linear solution which, according to 
(36b), was chosen to be real. The main effect of nonlinearity is to generate a non-zero 
imaginary part for S and, thus, give rise to a modification of the carrier wavenumber 
k, ; the wave-amplitude distribution remains practically unaffected, for IS1 is found 
to be indistinguishable from the linear solution to within the accuracy of the graph. 
Exactly the same conclusions were reached at  values of X as large as 15.0. 

The absence of dramatic nonlinear effects in the nonlinear steady state is perhaps 
hinted by the fact that (36a) admits solitary-wave solutions only under very special 
circumstances (Jang & Benney 1981). Thus, one would suspect that the nonlinear 
response disperses out, in a way more or less similar to the linear response. However, 
the agreement between linear and nonlinear wave amplitudes found here is quite 
remarkable. From a certain point of view, this may be disappointing, but comparison 
with observation does not seem to contradict our findings : Newman (1970) presents 
aerial photographs of ship waves from which it is clear that the wave disturbance 
close to the cusp lines is in good agreement with linear theory; the only disagreement 
involves the apex of the cusp lines which is found about one ship length ahead of 
the ship bow. The nature of the nonlinear steady-state response found here supports 
the view that this discrepancy is not due to weakly nonlinear free-surface effects in 
the far field, but most likely should be attributed to a near-field phenomenon. 

6. Unsteady transition region 
The unsteady wave disturbance discussed in 553 and 4 was found to be discon- 

tinuous at X = c, T and it was remarked that the discontinuity is smoothed out by 
higher-order dispersive effects. This topic is taken up here. 

The appearance of a discontinuity at X = c, T suggests that derivatives with 
respect to X become large there; thus, in the vicinity of X = c, T some higher-order 
dispersive terms, which are negligible away from X = c, T, become as important as 
the dominant dispersive and nonlinear terms retained in the evolution equation (22). 
For this reason, returning to (13), we note that the term proportional to S,, should 
be restored in (22), which now reads 

(40) S ,  + c, S, + c1 S,,, - k2c3 S,, + ibS2S* = ic, S(X)  6( 2) , 

where c* = - 

More formally, (22) can be viewed as the outer limit of (40). The inner limit is 
described by g = 0(1 ) ,  E + O ,  where g is the inner variable: 

In terms of the inner variable, the governing equation for the inner solution 8 ( 8 , Z ,  T) 

f l T  + c1 RzZz - ic, 82, + iPp8* = i 3 6(T) S(Z), (43a) 

8 ( X , Z ,  T )  = 0 (T+O-). (43b) 

is C 

CO 
with the initial condition 
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term, 8 approaches the linear similarity solution, 3, : 
For 0 < T 6 1, when the linear dispersive terms in (43a) dominate the nonlinear 

where 

ds exp [i(s[+ c1 s3)], (44) 

(45) 

Note that the outer limit of gL matches smoothly with the inner limit of 8,: 

ic, " - Ai - - SL(X+C~T-,Z) (2, -m). 
c,( 3c, T): ($9 - 

Accordingly, the solution of the nonlinear forced problem (43) is equivalent to the 
solution of the homogeneous equation 

8, + c1 flzZz - ic, i7zz + i/X!?S* = 0, (47) 

subject to the asymptotic initial condition 

8+gL (T+O+), (48) 

8+0 (2, + a), 8+S(X+Co T-, 2) (2, - 00). (49) 

and the matching requirements 

The above analysis shows that all unsteady effects are confined in the region 
X- c, T = O(e2) which, as T increases, moves away from the source with speed c,. 
Also, from (44), it  is easy to show that, for 2 = 0(1) and Z +  +OO, the unsteady 
response decays only algebraically rather than exponentially ; thus, it is possible for 
the unsteady disturbance to persist outside the region where the steady response is 
appreciable. More detailed information about the effect of nonlinearity inside the 
unsteady region requires a numerical investigation of the nonlinear problem (47)-(49) 
and is not pursued here. 

The author is indebted to Professor J. N. Newman for helpful discussions on this 
topic. This work was supported by the Office of Naval Research under contract NR 
062-742. 
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